Synthesis of Aminomethyl Arylsulfides *via* Novel Synthetic Auxiliary Benzotriazole Promoted by Samarium Diiodide

Gen Liang LU¹, Yun Fa ZHENG², Yong Min ZHANG¹*

1. Department of Chemistry, Zhejiang University (Campus Xixi), Hangzhou 310028Depatment of Chemistry, Lishui Teachers College, Lishui 323000

Abstract: Aminomethyl arylsulfides are synthesized through nucleophilic substitution of a benzotriazolate anion by thiolates promoted by samarium diiodide.

Keywords: Aminomethyl arylsulfides, benzotriazole, samarium diiodide, disulfides.

Benzotriazole methodology has already come a long way, but in the last decade benzotriazole is an excellent synthetic auxiliary in many useful synthetic transformations¹⁻⁵. Because benzotriazolate anion is a good leaving group, it may be used in place of a halogen in many reactions. The use of benzotriazole as a synthetic auxiliary has a number of significant advantages. For example, it is readily available and quite cheap; it is acidic with a pKa of about 8, which enables easy separation and recovery. Many types of compounds have been synthesized *via* benzotriazole auxiliary⁵.

Samarium diiodide has been extensively applied to organic synthesis⁶⁻⁹. It has recently been found that thiolates (RSSmI₂) obtained from reductive cleavage of diorganyl disulfides with samarium diiodide are nucleophilic reagents, and some interesting reactions have taken place with them¹⁰⁻¹¹.

Although α -amino sulfides (N, S-acetals) in five or six membered rings are very common in hetereocyclic chemistry and are easily available¹², open chain hemithioaminals are relatively little explored. Aminomethyl phenyl sulfides are useful percursors in the preparation of (aminomethyl)-trialkyl-stannanes¹³⁻¹⁴. Some methods have been reported for preparation of hemithioaminals, for example, condensation of formaldehyde¹⁵, thiophenols with secondary amines and reactions of N-[1-(benzotriazol-1-yl)alkyl]amine with sodium salts of thiols¹⁶, etc. However, these methods suffered from using metallic sodium, alkaline medium and thiophenols. Here we wish to report that aminomethyl arylsulfides are synthesized through nucleophilic substitution of a benzotriazolate anion by thiolate promoted by SmI₂.

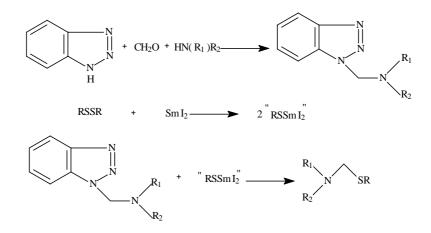


Table 1 Synthesis of aminomethyl sulfides.

Entry	R_1	R_2	R	Reaction times(h)	Yield*(%)
1	Ph	Н	p-CH ₃ C ₆ H ₄	12	82
2	Ph	Н	p-ClC ₆ H ₄	12	79
3	Ph	Н	Ph	12	80
4	m-ClC ₆ H ₄	Н	Ph	14	75
5	o-CH ₃ C ₆ H ₄	Н	p-ClC ₆ H ₄	12	78
6	o-CH ₃ C ₆ H ₄	Н	Ph	12	84
7	p-CH ₃ C ₆ H ₄	Н	p-ClC ₆ H ₄	12	82
8	$m-BrC_6H_4$	Н	p-CH ₃ C ₆ H ₄	14	70
9	Ph	CH ₃	Ph	12	80

*Yield of isolated product

The reactions were conducted at room temperatures. 1- $(\alpha$ -Aminoalkyl)-benzotriazoles are very easy to be prepared¹⁷. In view of the easily available starting material, good yield, mild and neutral reaction conditions as well as the simple operation, we think that the present procedure provides a useful method for synthesis of aminomethyl arylsulfides.

Experimental

Melting points were uncorrected. HMPA was dried by CaH_2 and was then distilled *in vacuo*. Tetrahydrofuran was distilled from sodium/benzophenone ketyl immediately before use. IR spectra were recorded on a PE-683 spectrometer. Mass spectra were recorded on a HP5989B spectrometer. ¹H NMR spectra were obtained with a JEOL PMX 60si spectrometer in CCl₄ solution using TMS as internal standard. The reactions were performed in a Schlenk type glass apparatus under a nitrogen atmosphere.

General Procedure

To a solution of SmI₂ (2.2mmol, in 22mL THF), 0.5mL HMPA and 1mmol disulfide are added. After stirring for 1 hr at 40°C, 2mmol of 1-(α -aminoalkyl)-benzotriazoles is added. After stirring for the given hours at room temperatures (see **Table 1**), the reaction mixture is treated with dilute hydrochloric acid (0.1M, 5mL) and extracted twice with ether. The combined organic layers are washed with saturated sodium thiosulfate solution (20 mL) and brine (20 mL). After the solution is dried over anhydrous MgSO₄, the solvents are removed under reduced pressure. The residue is purified by preparative TLC (silica gel) with cyclohexane and ethyl acetate (3:1) as eluent.

PhNHCH₂SC₆H₄CH₃-p: m.p. 38°C; ¹H NMR: 7.2-6.4 (9H, m), 4.40 (2H, s), 3.75 (1H, s, NH), 2.20 (3H, s). IR: 3440 cm⁻¹. m/z: 229.

PhNHCH₂SPhCl-*p*: m.p. 51°C; ¹H NMR: 7.4-6.3 (9H, m), 4.40 (2H, s), 3.93 (1H, s, NH). IR: 3440 cm⁻¹. m/z: 249.

PhNHCH₂SPh: oil; ¹H NMR: 7.2-6.4 (10H, m), 4.50 (2H, s), 3.90 (1H, s, NH). IR: 3450 cm⁻¹. m/z: 215.

m-ClPhNHCH₂SPh: oil; ¹H NMR: 7.2-6.4 (9H, m), 4.50 (2H, s), 3.92 (1H, s, NH). IR: 3440 cm⁻¹. m/z: 249.

 $o-CH_3C_6H_4NHCH_2SC_6H_4Cl-p$: m.p. 68°C; ¹H NMR: 7.2-6.4 (8H, m), 4.45 (2H, s), 3.83 (1H, s, NH), 1.93 (3H, s). IR: 3435 cm⁻¹. m/z: 263.

*o***-CH₃PhNHCH₂SPh**:oil; ¹H NMR: 7.1-6.3 (9H, m), 4.50 (2H, s), 3.70 (1H, s, NH), 1.90 (3H, s). IR: 3460 cm^{-1} . m/z: 229.

p-CH₃PhNHCH₂SPhCl-*p*: m.p. 65°C; ¹H NMR: 7.2-6.4 (8H, m), 4.40 (2H, s), 3.75 (1H, s, NH), 1.85 (3H, s). IR: 3440 cm⁻¹. m/z: 263.

m-BrPhNHCH₂SPhCH₃-*p*: oil; ¹H NMR: 7.2-6.4 (8H, m), 4.40 (2H, s), 3.95 (1H, s, NH), 2.18 (3H, s). IR: 3440 cm⁻¹. m/z: 307.

Ph(**CH**₃)**NCH**₂**SPh**: m.p. 36-38°C (Lit.¹⁸ 36.4-38°C); ¹H NMR: 7.2-6.4 (10H, m), 4.80 (2H, s), 2.76 (3H, s).

Acknowledgments

We thank the National Natural Science Foundation of China (Project No. 29872010), NSF of Zhejiang Province, China and the Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences for financial support.

References

- 1. A. R. Katritzky, S. Rachwal, G. J. Hitchings, *Tetrahedron*, 1991, 47, 2683.
- 2. A. R. Katritzky, Z. Yang, D. J. Cundy, Aldrichimica Acta, 1994, 27, 31.
- 3. A. R. Katritzky, X. Lan, Chem. Soc. Rev., 1994, 363.
- 4. A. R. Katritzky, X. Lan, W. Q. Fan, Synthesis, 1994, 445.
- 5. A. R. Katritzky, X. Lan, J. Z. Yang, O. V. Denisko, Chem. Rev. 1998, 98, 409.
- 6. P. Girard, J. L. Namy, H. B. Kangan, J. Am. Chem. Soc., 1980, 102, 2693.
- 7. J. A. Soderquist, *Aldrichimica Acta*, **1991**,15.
- 8. G. A. Molander, Chem. Rev., 1992, 92, 29.

Gen Liang LU et al.

- 9. G. A. Molander, C. R. Harris, Chem. Rev., 1996, 96, 307.
- 10. X. S. Jia,Y. M. Zhang,X. J. Zhou, Synth. Commun., **1994**, 24, 387.
- G. L. Lu,Z. P. Zhan,Y. M. Zhang, Synth. Commun., 1998, 28, 3657.
 R. A. Langdale-Smith, J. Org. Chem. 1971, 36, 226.
- 13. D. J. Peterson, J. F. Ward, J. Organomet. Chem. 1974, 66, 209.
- 14. D. J. Peterson, J. Am. Chem. Soc. **1971**, 93, 4027. 15. G. E. Grillot, H. R. Felton, B. R. Garret, H. Greenberg, R. Green, R. Clementi, M. Moskowiki, J. Am. Chem. Soc. 1954, 8, 3969.
- 16. A. R. Katritzky, W. Q. Fan, Q. H. Long, Synthesis, 1993, 229.
- 17. A. R. Katritzky, B. Pilarski, L. Urogdi, Org. Pre. Pro. Int. 1989, 21, 135.
- 18. G. F. Grillot, R. E. Schaffrath, J. Org. Chem. 1959, 24, 1035.

Received 29 April 1999